Evolutionary history underlies plant physiological responses to global change since the last glacial maximum.
نویسندگان
چکیده
Assessing family- and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Here, we used stable carbon isotopes, leaf nitrogen content and stomatal measurements to assess changes in leaf-level physiology in a mixed conifer community that underwent significant changes in composition since the last glacial maximum (LGM) (21 kyr BP). Our results indicate that most plant taxa decreased stomatal conductance and/or maximum photosynthetic capacity in response to changing conditions since the LGM. However, plant families and species differed in the timing and magnitude of these physiological responses, and responses were more similar within families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.
منابع مشابه
Plant responses to low [CO2] of the past.
During the Last Glacial Maximum (LGM; 18,000-20,000 yr ago) and previous glacial periods, atmospheric [CO(2)] dropped to 180-190 ppm, which is among the lowest concentrations that occurred during the evolution of land plants. Modern atmospheric CO(2) concentrations ([CO(2)]) are more than twice those of the LGM and 45% higher than pre-industrial concentrations. Since CO(2) is the carbon source ...
متن کاملRapid report Glacial trees from the La Brea tar pits show physiological constraints
• While studies of modern plants indicate negative responses to low [CO2] that occurred during the last glacial period, studies with glacial plant material that incorporate evolutionary responses are rare. In this study, physiological responses to changing [CO2] were compared between glacial (La Brea tar pits) and modern Juniperus trees from southern California. • Carbon isotopes were measured ...
متن کاملResponses to historical climate change identify contemporary threats to diversity in Dodecatheon.
Anthropogenic climate change may threaten many species with extinction. However, species at risk today survived global climate change in recent geological history. Describing how habitat tracking and adaptation allowed species to survive warming since the end of the Pleistocene can indicate the relative importance of dispersal and natural selection during climate change. By taking this historic...
متن کاملExamining Plant Physiological Responses to Climate Change through an Evolutionary Lens.
Since the Industrial Revolution began approximately 200 years ago, global atmospheric carbon dioxide concentration ([CO2]) has increased from 270 to 401 mL L , and average global temperatures have risen by 0.85°C, with the most pronounced effects occurring near the poles (IPCC, 2013). In addition, the last 30 years were the warmest decades in 1,400 years (PAGES 2k Consortium, 2013). By the end ...
متن کاملNew Insight into the Colonization Processes of Common Voles: Inferences from Molecular and Fossil Evidence
Elucidating the colonization processes associated with Quaternary climatic cycles is important in order to understand the distribution of biodiversity and the evolutionary potential of temperate plant and animal species. In Europe, general evolutionary scenarios have been defined from genetic evidence. Recently, these scenarios have been challenged with genetic as well as fossil data. The origi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology letters
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2014